# HIGH VOLTAGE POWER CABLES CONTENTS

GENERAL INTRODUCTION

| 4        | TECHNICAL<br>INFORMATION                                                                 |
|----------|------------------------------------------------------------------------------------------|
| 13<br>15 | SINGLE CORE XLPE CABLE, 38/66(72.5)kV<br>Aluminum Laminated Sheath<br>Lead Alloy Sheath  |
| 17<br>19 | SINGLE CORE XLPE CABLE, 76/132(145)kV<br>Aluminum Laminated Sheath<br>Lead Alloy Sheath  |
| 21<br>23 | SINGLE CORE XLPE CABLE, 127/220(245)kV<br>Aluminum Laminated Sheath<br>Lead Alloy Sheath |

# **HV CABLES FOR SAUDI ELECTRICITY COMPANY**

| 27 | SINGLE CORE XLPE CABLE, 110kV<br>COPPER WIRES SCREEN & ALUMINUM LAMINATED SHEATH |
|----|----------------------------------------------------------------------------------|
| 29 | SINGLE CORE XLPE CABLE, 115kV<br>LEAD ALLOY SHEATH                               |
| 31 | SINGLE CORE XLPE CABLE, 132kV<br>COPPER WIRES SCREEN & ALUMINUM LAMINATED SHEATH |
| 33 | SINGLE CORE XLPE CABLE, 230kV<br>COPPER WIRES SCREEN & ALUMINUM LAMINATED SHEATH |

# **GENERAL** INTRODUCTION

Bahra Cables Company was established in 2008 to serve Saudi & GCC Markets. It is based in Bahra industrial city located 25km from Jeddah. Bahra Cables Factory occupies over 300,000 square meters of prime manufacturing space together with associated design offices, laboratories and storage area. It specializes in Manufacturing and Distributing Electric Cables.

Bahra Cables Company is committed to the production of the best product quality and service, utilizing cutting edge European Technology in manufacturing. The core technologies in production processes, material applications and logistic procedures were provided from German experts and the key functions are being managed by German engineers.

The organization has a lean vertical management structure which is designed to integrate with a highly developed IT-based structure. This partnership allows the rapid flow of information through the management chain and facilities timely response in the best traditions of 'hands on' management. Bahra Cables Company has the flexibility to provide a versatile product range to serve its customers. As example, construction sectors, electric utilities, distribution, industrial, oil & gas and petrochemical sectors. The cables produced comply with both American standards (CSA, ANSI and ICEA) and European standards (IEC, BS, NF and VDE Specifications.)

The scope of this catalogue is to provide an in depth view of technical information on high voltage and extra high voltage lead sheathed/screened cables upto 220kV, with XLPE insulation to IEC 60840/IEC 62067/ ICEA S-108-720.

#### AREA

Bahra Cables Company has a total land area of about 300,000sqm at disposal. The built-up area, including offices and plant, of start up phase is more than 100,000sqm. The total available stock yard for(drum) storage is more than 80,000sqm.

## PRODUCT SCOPE

BAHRA CABLES COMPANY is committed to deliver the highest standard wires and power cables to the local market, GCC and for export.

To do so, Bahra Cables Company produces a versatile product range cover most of our customer needs:

- MV cables to IEC 60502-2 up to 18/30 (36) kV and to BS 6622 up to 19/33 (36) kV, which is covered in the catalogue , in addition to other products described in separate catalogues:
- MV cables with LSFZH to BS 7835.
- Flexible wires and cables up to 300 mm2 to IEC 60227, BS 6004 & BS 6500.
- Building wires, THHN/THWN & THW to UL 8.3, with conductor sizes starting from 16 AWG.
- Thermosetting insulated wires types XHHW-2, XHHW, XHH, RHW-2, RHW &RHH to UL44
- Building wires (NYA) to IEC 60227 and BS 6004, from 1.5 mm<sup>2</sup> and above.
- LV power cables with PVC and XLPE insulation to IEC 60502-1, BS 5476, BS 7889 and UL 1277.
- Low smoke and fume, zero halogen building wire (LSFZH) to BS 7611, with thermosetting insulation which is alternative to wire type (NYA), where the application requires higher standards of safety against the emission of smoke, fumes and toxic gases.
- LV cables with LSFZH, thermosetting insulation which under exposure of to fire generate low emission of smoke, fumes and toxic gases and zero halogens. The cables are produced according to BS 6724, IEC 60502-1 and tested to IEC 61034, IEC 60754 & IEC 60332.
- MV cables (Lead Sheathed / Armoured / Un armoured) PVC or MDPE Sheath.
- HV cables up to 230 kV according to IEC 60840 & IEC 62067, and to ANSI / ICEA S-108-720, with conductor sizes up to 2500mm<sup>2</sup>.

The future product scope will be extended to Extra High voltage cables up to 480 kV.

### FACTORY MACHINERY

All production machines are top of the line of the cables machinery suppliers. From start up with wire drawing lines to extrusion lines, to assembly machines up to the laboratories and the final test fields, all technical equipment is provided with the highest European standards of electronic control equipment and measuring devices which insures that the requirements of different quality standards are met.

All machines/production lines are prepared for data communication and data exchange bottom up and top down using the most modern decentralized control software at the lines (PLC) combined with an efficient central steering and a planning system focused on the demand of cable manufacturers. This way, full traceability will be guaranteed from production start to end, by being able to follow up the machines involved and the material used.

SAHRA BÖLL

# LOGISTICS

All material flow in BCC from incoming raw material up to outgoing cables will be planned and controlled by a complete software system. Herein a classical ERP system will be enhanced and completed by the most modern MES (Manufacturing Executive System) which has a unique focus on the specific problematic issues of cables manufacturing with longitudinal products being winded up and winded off.

#### The Manufacturing Executive System - MES - covers:

# PLANNING

The planning system is active on several levels. For the proper function, all master data (material properties, dimensions, etc.) are saved and permanently maintained in the central database based on

- Cable design
- Planning of Sales Orders
- Planning of Production Orders

# DATA COMMUNICATION

The exchange of data is important in several areas.

- Incoming inspection
- Raw Materials Status quo of production orders
- Finished goods
- Shipping status





# **TECHNICAL INFORMATION**

Bahra Cables Company is willing to provide advice and assistance on all matters concerning XLPE insulated power cables. Please contact the Technology Department for any query.

#### QUALITY IS OUR MAIN TARGET

General

Bahra Cables Company is born to be one of the leading Power Cables Manufacturers in Saudi Arabia and the GCC area. We are working in different axes to completely fulfill customers satisfaction which is the milestone of our business, such axes are:

1. Product quality complying with the local and international standards

2. Product Reliability is starting from the time of product design to fit for the intended application and environmental conditions, to the selection of the raw material from only the highest class suppliers with internationally trusted reputation. Our state of art testing equipments and the strict quality procedures ensure the product quality and integrity so we can guarantee that our cables are defect free and suitable for the intended application through the cable service lifetime.

**3**. High performance of the product and service through cooperation between experienced staff from Germany and local experts who are aware of the local market requirements and the highest international standards of cables manufacturing. Such cooperation in know-how is invested to provide our customer with the best service and support.

**4**. Bahra Cables Company's Quality Management System conforms to the ISO 9001: 2008 International Management Quality System Standard with scope of Design and Manufacturing of Electrical Power Cables and Wires. BCC is certified by American Systems Registrar (ASR), ANAB Accredited.

**5**. Bahra Cables Company is frequently testing its products at internationally reputable labs, diversity of products have been tested and confirmed compliance to the international standard at KEMA, IPH, SAG(Berlin), BSI and BASEC Labs covers all the company product range.

6. Bahra Cables Company has UL Registration for wire types such as THHN., THWN, THW, XHHW-2, XHW, XHH, RHW-2, RHW & RHH, cables Type TC (Low voltage control cables and Low Voltage Power Cables for tray and direct buried applications) which only implies that Bahra Cables Company is committed to provide customer satisfaction through quality product and services.





# TECHNICAL INFORMATION

#### NOMINAL VALUE

Value by which a quantity is designated and which is often used in tables. (Note: Usually, in IEC standards, nominal values give rise to values to be checked by measurements taking into account specified tolerances).

#### **MEDIAN VALUE**

When several test results have been obtained and ordered in an increasing (or decreasing) succession, the median value is the middle value if the number of available values is odd, and the mean of two middle values if the number is even.

#### APPROXIMATE VALUE

Value which is neither guaranteed nor checked, it is used, for example, for the calculation of other dimensional values.

#### **ROUTINE TESTS**

Tests made by the manufacturer on each manufactured length of cable to check that each length meets the specified requirements.

#### SAMPLE TESTS

Tests made by the manufacturer on samples of completed cable or components taken from a completed cable, at a specified frequency, so as to verify that the finished product meets the specified requirements.

#### **TYPE TESTS**

Tests made before supplying, on a general commercial basis, a type of cable covered by the standard, in order to demonstrate satisfactory performance characteristics to meet the intended application.

(Note: These tests are of such nature that, after they have been made, they need not be repeated, unless changes are made in the cable materials or design or manufacturing process which might change the performance characteristices).

#### **PREQUALIFICATION TEST**

Test made before supplying, on a general commercial basis, a type of cable system covered by the standard, in order to demonstrate satisfactory long term performance of the complete cable system.

#### EXTENSION OF PREQUALIFICATION TEST

Test made before supplying, on a general commercial basis, a type of cable system covered by the standard, in order to demonstrate satisfactory long term performance of the complete cable system taking into account an already prequalification cable system.

#### ELECTRICAL TESTS AFTER INSTALLATION

Tests made to demonstrate the integrity of the cable and its accessories as installed.

#### CABLE SYSTEM

Cable with installed accessories.

#### NOMINAL ELECTRICAL STRESS

Electrical stress calculated at U0 using nominal dimensions.

# ELECTRICAL TECHNICAL INFORMATION

- $U_{\circ}$ : The rated r.m.s. power frequency voltage between each conductor and screen or sheath for which cables and accessories are designed.
- U: The rated r.m.s. power frequency voltage between ant two conductors for which cables and accessories are designed.
- U<sub>m</sub>: The maximum r.m.s. power frequency voltage between any two conductors for which cables and accessories are designed. It is the highest voltage that can be sustained under normal operating conditions at any time and in any point in a system.

Cables are designed by  $U_{\circ}/U$  ( $U_{\rm m})$  to provide guidance on compatibility with switchgear and transformers.

The following table gives the relation between  $U_{\circ}$ , U and  $U_{m}$  in accordance with IEC 60183.

| Rated Voltage of Cables<br>(U₀) | Nominal System Voltage<br>(U) |      | Highest Voltage for<br>Equipment<br>(U <sub>m</sub> ) |       |
|---------------------------------|-------------------------------|------|-------------------------------------------------------|-------|
| 26.0                            | 45.0                          |      | 47.0                                                  | 52.0  |
| 36.0                            | 60.0                          | 66.0 | 69.0                                                  | 72.5  |
| 64.0                            | 110.0                         |      | 115.0                                                 | 123.0 |
| 76.0                            | 132.0                         |      | 138.0                                                 | 145.0 |
| 87.0                            | 150.0                         |      | 161.0                                                 | 170.0 |
| 127.0                           | 220.0                         |      | 230.0                                                 | 245.0 |

#### Table 1: Relationship between $U_{\circ},\,U$ and $U_{m}$





#### **1. RESISTANCE**

The values of conductor DC resistance are dependant on the temperature and it is calculated by the following formula:

|                |      | $R_{\theta} = R_{20}[1 + \alpha (\theta - 20)]$ | Ω/km |
|----------------|------|-------------------------------------------------|------|
| whe            | ere, |                                                 |      |
| R <sub>θ</sub> | :    | The conductor DC resistance at $	heta$ °C       | Ω/km |
| $R_{20}$       | :    | The conductor DC resistance at 20°C             | Ω/km |
| θ              | :    | Operating temperature                           | °C   |
| α              | :    | Temperature coefficient                         | 1/°C |
|                |      | = 0.00393 for Copper                            |      |
|                |      | = 0.00403 for Aluminum                          |      |

Generally the Dc resistance is based on IEC 60228 and to calculate the AC resistance of the conductor at the operating temperature the following

| 1      | $R_{AC} = R_{\theta}(1 + Y_{S} + Y_{P})$ | Ω/km |
|--------|------------------------------------------|------|
| where, |                                          |      |
| YS :   | Skin effect factor                       |      |
| YP :   | Proximity effect factor                  |      |

#### 2. INDUCTANCE

|    |      | $L = K + 0.2 \ln (2S/d)$                | mh/km                  |
|----|------|-----------------------------------------|------------------------|
| wh | ere, |                                         |                        |
| L  |      | The Inductance                          | mh/km                  |
| Κ  | :    | Constant depend on number of wires      |                        |
| d  | :    | Conductor diameter                      |                        |
| S  | :    | Axial Spacing                           |                        |
|    |      | =1.26 x axial spacing between cables in | case of flat formation |

#### 3. REACTANCE

|    |      | $X = 2 \pi f L \times 10^{-3}$ | Ω/km  |
|----|------|--------------------------------|-------|
| wh | ere, |                                |       |
| Х  | :    | The Cable Reactance            | Ω/km  |
| L  | :    | The Inductance                 | mh/km |
| f  | :    | Frequency                      | Hz    |

To calculate the cable impedance we should follow the below equation:

$$Z = \sqrt{X^{2+} R^{2}_{AC}} \qquad \Omega/km$$

#### 4. CAPACITANCE

 $C = \frac{\varepsilon_r}{18\ln\frac{D}{d}}$  $\mu F/Km$ where, C : Capacitance  $\mu F/Km$ : n3 Relative permitivity of insulation material D : Diameter over insulation mm d : Digmeter under insulation mm



# ELECTRICAL TECHNICAL INFORMATION CABLE ELECTRICAL PARAMETERS

#### 5. CHARGING CURRENT

|     |     | $I_{\rm c} = 2\pi  {\rm f}  {\rm C}  {\rm U}_{\rm o}  {\rm x}   10^{-6}$ | A/Km  |
|-----|-----|--------------------------------------------------------------------------|-------|
| whe | re, |                                                                          |       |
| С   | :   | Capacitance                                                              | μF/Km |
| f   | :   | Frequency                                                                | Hz    |
| Uo  | :   | Rated Phase Voltage                                                      | V     |

#### 6. DIELECTRIC LOSSES

|      |    | $W_d = 2\pi f C U^2_\circ tan \delta \times 10^{-6}$ | watt/Km/Ph |
|------|----|------------------------------------------------------|------------|
| wher | e, |                                                      |            |
| С    | •  | Capacitance                                          | $\mu$ F/Km |
| f    | :  | Frequency                                            | Hz         |
| Uo   | :  | Rated Phase Voltage                                  | V          |
| tanδ | :  | Dielectric Power Factor                              |            |

#### 7. SHORT CIRCUIT CURRENT

$$I_{sc@t} = \frac{I_{sc@1Sec}}{\sqrt{t}}$$
 KA

where,

| lsc@t | : | Short Circuit current for t seconds | KA  |
|-------|---|-------------------------------------|-----|
| lsc@1 | : | Short Circuit current for 1 seconds | KA  |
| t     | • | Duration                            | Sec |

#### 8. ELECTRIC STRESS

$$E = \frac{U_{\circ}}{X \ln \left(\frac{D_{INS}}{D_{ISC}}\right)} KV/mm$$

| where,             | D <sub>ISC</sub> /                       |                                                        |
|--------------------|------------------------------------------|--------------------------------------------------------|
| E :                | Electric Stress                          | KV/mm                                                  |
| Uo :               | Rated Phase Voltage                      | V                                                      |
| D <sub>INS</sub> : | Diameter after insulation                | mm                                                     |
| D <sub>ISC</sub> : | Diameter after inner semi-conductor      | mm                                                     |
| Х :                | When substitute the X in the above equ   | pation by D <sub>ISC</sub> this will give the electric |
|                    | stress at conductor surface which is the | highest stress                                         |
|                    | When substitute the X in the above equ   | Dation by D <sub>INS</sub> this will give the electric |
|                    | stress at insulation                     |                                                        |

# ELECTRICAL TECHNICAL INFORMATION

#### PROPERTIES FOR METALS

The following table shows some electrical and physical properties for the metals used in HV cables: Table 2: Electrical and physical properties for metals

| Property                                                   | Copper  | Aluminum | Lead    |
|------------------------------------------------------------|---------|----------|---------|
| IACS 100%                                                  | 101.0   | 61.0     | 8.0     |
| Electrical resistivity @ 20°C (Ω.m (10 <sup>-8</sup> ))    | 1.707   | 2.8264   | 21.4    |
| Temperature coefficient of Resistance per °C               | 0.00393 | 0.00403  | 0.004   |
| Density @ 20 °C (Kg/m³)                                    | 8890.0  | 2703.0   | 11340.0 |
| Coefficient of thermal expansion(1/°C x 10 <sup>-6</sup> ) | 17.0    | 23.0     | 29.0    |
| Melting point (°C)                                         | 1083.0  | 659.0    | 327.0   |
| Ultimate tensile strength (Mn/mm²)                         | 225.0   | 70-90    | -       |

#### SHORT CIRCUIT CURRENT RATING FOR CONDUCTORS

Table 3: Copper Conductor

| $CSA (mm^2)$ | Duration |       |       |       |       |       |       |       |       |       |  |
|--------------|----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--|
|              | 0.1      | 0.2   | 0.3   | 0.4   | 0.5   | 1.0   | 2.0   | 3.0   | 4.0   | 5.0   |  |
| 150          | 68.0     | 48.1  | 39.3  | 34.0  | 30.4  | 21.5  | 15.2  | 12.4  | 10.8  | 9.6   |  |
| 185          | 83.8     | 59.3  | 48.4  | 41.9  | 37.5  | 26.5  | 18.7  | 15.3  | 13.3  | 11.9  |  |
| 240          | 108.5    | 76.7  | 62.6  | 54.2  | 48.5  | 34.3  | 24.3  | 19.8  | 17.2  | 15.3  |  |
| 300          | 135.7    | 95.9  | 78.3  | 67.8  | 60.7  | 42.9  | 30.3  | 24.8  | 21.5  | 19.2  |  |
| 400          | 180.9    | 127.9 | 104.4 | 90.4  | 80.9  | 57.2  | 40.4  | 33.0  | 28.6  | 25.6  |  |
| 500          | 226.1    | 159.9 | 130.5 | 113.1 | 101.1 | 71.5  | 50.6  | 41.3  | 35.8  | 32.0  |  |
| 630          | 284.9    | 201.5 | 164.5 | 142.5 | 127.4 | 90.1  | 63.7  | 52.0  | 45.1  | 40.3  |  |
| 800          | 362.1    | 256.0 | 209.0 | 181.0 | 161.9 | 114.5 | 81.0  | 66.1  | 57.3  | 51.2  |  |
| 1000         | 452.5    | 320.0 | 261.3 | 226.3 | 202.4 | 143.1 | 101.2 | 82.6  | 71.6  | 64.0  |  |
| 1200         | 543.0    | 383.9 | 313.5 | 271.5 | 242.8 | 171.7 | 121.4 | 99.1  | 85.9  | 76.8  |  |
| 1600         | 723.8    | 511.8 | 417.9 | 361.9 | 323.7 | 228.9 | 161.9 | 132.2 | 114.5 | 102.4 |  |
| 2000         | 905.0    | 640.0 | 522.5 | 452.5 | 404.7 | 286.2 | 202.4 | 165.2 | 143.1 | 128.0 |  |
| 2500         | 1131.1   | 799.8 | 653.1 | 565.6 | 505.9 | 357.7 | 252.9 | 206.5 | 178.9 | 160.0 |  |

#### Table 4: Aluminum Conductor

| $CSA (mm^2)$ | Duration |       |       |       |       |       |       |       |       |       |  |
|--------------|----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--|
|              | 0.1      | 0.2   | 0.3   | 0.4   | 0.5   | 1.0   | 2.0   | 3.0   | 4.0   | 5.0   |  |
| 150          | 44.9     | 31.8  | 25.9  | 22.5  | 20.1  | 14.2  | 10.0  | 8.2   | 7.1   | 6.4   |  |
| 185          | 55.3     | 39.1  | 32.0  | 27.7  | 24.7  | 17.5  | 12.4  | 10.1  | 8.8   | 7.8   |  |
| 240          | 71.8     | 50.8  | 41.4  | 35.9  | 32.1  | 22.7  | 16.1  | 13.1  | 11.4  | 10.2  |  |
| 300          | 89.5     | 63.3  | 51.7  | 44.7  | 40.0  | 28.3  | 20.0  | 16.3  | 14.2  | 12.7  |  |
| 400          | 119.5    | 84.5  | 69.0  | 59.8  | 53.5  | 37.8  | 26.7  | 21.8  | 18.9  | 16.9  |  |
| 500          | 149.3    | 105.5 | 86.2  | 74.6  | 66.8  | 47.2  | 33.4  | 27.3  | 23.6  | 21.1  |  |
| 630          | 188.2    | 133.0 | 108.6 | 94.1  | 84.1  | 59.5  | 42.1  | 34.4  | 29.8  | 26.6  |  |
| 800          | 239.1    | 169.0 | 138.0 | 119.5 | 106.9 | 75.6  | 53.5  | 43.6  | 37.8  | 33.8  |  |
| 1000         | 298.8    | 211.3 | 172.5 | 149.4 | 133.6 | 94.5  | 66.8  | 54.6  | 47.3  | 42.3  |  |
| 1200         | 358.6    | 253.6 | 207.0 | 179.3 | 160.4 | 113.4 | 80.2  | 65.5  | 56.7  | 50.7  |  |
| 1600         | 478.1    | 338.1 | 276.1 | 239.1 | 213.8 | 151.2 | 106.9 | 87.3  | 75.6  | 67.6  |  |
| 2000         | 597.7    | 422.6 | 345.1 | 298.8 | 267.3 | 189.0 | 133.6 | 109.1 | 94.5  | 84.5  |  |
| 2500         | 746.9    | 528.2 | 431.2 | 373.5 | 334.0 | 236.2 | 167.0 | 136.4 | 118.1 | 105.6 |  |



**ELECTRICAL** TECHNICAL INFORMATION EARTHING METHODS

There are 3 types of bonding for the metallic sheaths inside the cable and these types are as following:

#### 1. BOTH END BOND

In this type of bonding, both sides of cable sheath will be connected to earth. With this method no induced voltage occur at cable ends, which makes it the most secure regarding safety aspects. But on the other hand circulating current will flow in the sheath as the loop between the two earthing points is closed through the ground. And these circulating currents are proportional to conductor current and therefor reduce cable ampacity significantly making it the most disadvantageous method regarding economic aspects. So this type of bonding is hardly applied for HV cables due to high losses, but it is the most common bonding type for MV and LV cables.

Fig. 1 shows the both end bond connection method Fig. 2 shows the induced voltage distribution against cable length



#### 2. SINGLE END BOND

In this type of bonding one side of the cable sheath will be connected to earth, so that at the other end "open end" the induced voltage will appear. Which will induced linearly along the cable length and it will increase as the length increases. So for safety requirements the open end of the sheath has to be protected with surge arrester (sheath voltage limiter). Also to avoid potential lifting in case of failure the both ends of cable sheath have to be connected additionally with an earth continuity conductor. This type is much better than the both end bonding system as when using single point bonding the losses approximately equal zero but due to the induced voltage on the free end this type is usually used for short lengths (less than 1 Km).

Fig. 3 shows the Single end bond connection method Fig. 4 shows the induced voltage distribution against the cable length





Fig. 4

#### 3. CROSS BONDING

This earthing method shall be applied for longer route lengths where joints are required due to the limited cable delivery length. The cross bonding system consists of three equal sections with cyclic sheath crossing after each section. The termonation points shall be solidly bonded to earth.

In ideal cross bonding systems the three section lengths are equal, so that no residual voltage occurs and thus no sheath current flow.

Very long lengths can consists of several cross bonding systems in a row, so it is recommended to maintain solid bonding of the system ends in order to prevent travelling surges in case of fault.

Also in cross bonding systems the conductors can be transposed. And this solution is suited for very long cable length or parallel circuits.

This type of bonding is the most common used type for HV cables.

Fig. 5 shows the cross bonding connection method

Fig. 6 shows the induced voltage distribution against the cable length.





Fig. 6







#### CONDUCTOR

The most important layer in cables as it is the current carrying capacity component and it may be Copper or Aluminum.

Conductor consists of stranded soft drawn wires wounded together, and it could have one of the following two shapes:

- 1. Circular compacted conductor for CSA up to and including 800 mm<sup>2</sup>
- 2. Segmental conductor consists of 5 segments for CSA over than 800 mm<sup>2</sup>

#### WATER TIGHT CONDUCTORS:

Upon request, the conductor may be water tight by using swelling powder, yarns, tapes inside it (between conductor layers).

#### CONDUCTOR SCREEN

It is an extruded thermoset semi-conducting compound to minimize the concentration of elctric stress at any points on the conductor surface due to the stranding.

Semi-conductive tape may be used before the conductor screen (it will be water blocked in case of water tight conductor).

#### **INSULATION**

The insulation material is an extruded and dry cured cross-linked polyethylene (XLPE), and it is the cable electrical protection.

The insulation should withstand the rated voltage, lightning over voltages and switching over voltage during its lifetime.

The insulation material is capable to withstand 90°C during normal operation and 250°C during short circuit conditions.

#### **INSULATION SCREEN**

It is an extruded thermoset semi-conducting compound over the insulation.

The three previous layers (conductor screen, insulation & insulation screen) are extruded simultaneously in one process and it is carried out on the CV lines with many measurements devices to control this process perfectly.

#### METALLIC SCREEN

This layer is the short circuit current carrying component and it may be one of the following type:

- 1. Copper wires with open helix copper tape as a binder
- 2. Lead alloy sheath
- 3. Combination of the previous

#### OUTER JACKET

This is the final prtection layer for all inside layers, and it may be one of the following types:

- 1. PE material (HDPE, LLDPE, MDPE)
- 2. PVC material
- 3. LSOH material

#### SEMI-CONDUCTIVE LAYER

A semi-conductive layer to be applied over the outer jacket for jacket field testing after installation and this layer may be graphite powder or extruded semi-conductive layer.



# SINGLE CORE XLPE CABLE WITH ALUMINUM LAMINATED SHEATH COPPER CONDUCTOR | 38/66(72.5)kV CU/XLPE/CWS/HDPE



# CABLE CONSTRUCTION

- Copper conductor, stranded, with round shape for cross-sections up to and including 800 sqmm and segmental for cross-sections 1000 sqmm and above.
- Inner semiconductor layer firmly bonded to the XLPE insulation.
- XLPE insulation.
- Outer semiconductor layer firmly bonded to the XLPE insulation (the inner semiconductor, XLPE insulation and outer semiconductor are extruded in one operation "Triple extrusion").
- Copper wires screen with water blocking tapes.
- Aluminum laminated sheath.
- HDPE over sheath with semi-conductive layer.

# **SPECIAL FEATURES**

- Copper wires screen: is the short circuit current carrying component.
- Water blocking tapes: is the longitudinal water barrier.
- Aluminum laminated Sheath: is the radial water barrier.

# APPLICABLE STANDARDS

- IEC 60840 / ICEA S-108-720
- IEC 60949 & ICEA P-45-482



# TECHNICAL INFORMATION COPPER CONDUCTOR | 38/66(72.5)kV CU/XLPE/CWS/HDPE

#### **TECHNICAL DATA**

|           | Conc            | luctor           |        |            |        |                    | Thickness | Approx.        | Approx.         | Max. DC                |             |
|-----------|-----------------|------------------|--------|------------|--------|--------------------|-----------|----------------|-----------------|------------------------|-------------|
| Item Code | CSA             | Shape            | of ISC | Insulation | of OSC | cu wires<br>screen |           | outer<br>diam. | cable<br>weight | resistance<br>at 20 °C | Capacitance |
|           | mm <sup>2</sup> |                  | mm     | mm         | mm     | No. X diam         | mm        | mm             | Kg/Km           | Ω/Km                   | μf/Km       |
| 31010021  | 150             |                  | 1.0    | 10         | 1.0    | 68x1.52            | 3.5       | 54.3           | 4220            | 0.1240                 | 0.181       |
| 31010022  | 185             | Ided             | 1.0    | 10         | 1.0    | 68x1.52            | 3.5       | 56             | 4625            | 0.0991                 | 0.193       |
| 31010023  | 240             | Strar            | 1.0    | 10         | 1.0    | 68x1.52            | 3.5       | 58.5           | 5270            | 0.0754                 | 0.211       |
| 31010024  | 300             | , pur            | 1.0    | 10         | 1.0    | 68x1.52            | 3.5       | 60.8           | 5930            | 0.0601                 | 0.228       |
| 31010025  | 400             | , Rol            | 1.0    | 10         | 1.0    | 68x1.52            | 3.5       | 63.3           | 6850            | 0.0470                 | 0.246       |
| 31010026  | 500             | ipact            | 1.0    | 10         | 1.0    | 68x1.52            | 4.0       | 67.4           | 8025            | 0.0366                 | 0.268       |
| 31010027  | 630             | Com              | 1.0    | 10         | 1.0    | 68x1.52            | 4.0       | 71.5           | 9535            | 0.0283                 | 0.297       |
| 31010028  | 800             |                  | 1.0    | 10         | 1.0    | 68x1.52            | 4.0       | 75.6           | 11395           | 0.0221                 | 0.326       |
| 31010029  | 1000            | ded              | 1.4    | 10         | 1.4    | 68x1.52            | 4.0       | 80.5           | 13690           | 0.0176                 | 0.365       |
| 31010030  | 1200            | itran<br>in)     | 1.4    | 10         | 1.4    | 68x1.52            | 4.5       | 85.6           | 15635           | 0.0151                 | 0.394       |
| 31010031  | 1600            | tal. S<br>illiko | 1.4    | 10         | 1.4    | 68x1.52            | 4.5       | 92.5           | 19795           | 0.0113                 | 0.442       |
| 31010032  | 2000            | men<br>(M        | 1.4    | 10         | 1.4    | 68x1.52            | 4.5       | 97.9           | 23445           | 0.0090                 | 0.480       |
| 31010033  | 2500            | Seg              | 1.4    | 10         | 1.4    | 68x1.52            | 4.5       | 104.7          | 28825           | 0.0072                 | 0.528       |

#### CURRENT CARRYING CAPACITY

|                   |                 | Direct I            | Burried                                 |                   | Installed in Air (shaded) |         |       |
|-------------------|-----------------|---------------------|-----------------------------------------|-------------------|---------------------------|---------|-------|
|                   |                 | Trefoil             | Flat                                    |                   |                           | Trefoil | Flat  |
| Bonding<br>System | CSA             | J.0m                | Q Q I I I I I I I I I I I I I I I I I I | Bonding<br>System | CSA                       | N igo   |       |
|                   | mm <sup>2</sup> | ρ <b>T</b> = 1.2, ( | ) = 35 °C                               |                   | mm <sup>2</sup>           |         | 40 °C |
|                   | 150             | 345                 | 405                                     |                   | 150                       | 447     | 508   |
| -                 | 185             | 389                 | 458                                     | D                 | 185                       | 511     | 581   |
| nding             | 240             | 451                 | 532                                     | ding              | 240                       | 602     | 687   |
| Bor               | 300             | 508                 | 600                                     | Bor               | 300                       | 688     | 789   |
| oint              | 400             | 575                 | 683                                     | oint              | 400                       | 792     | 912   |
| gle F             | 500             | 649                 | 774                                     | <u> </u>          | 500                       | 911     | 1055  |
| Sing              | 630             | 731                 | 879                                     | Sing              | 630                       | 1047    | 1224  |
| g or              | 800             | 810                 | 984                                     | g or              | 800                       | 1184    | 1400  |
| ndin              | 1000            | 983                 | 1162                                    | ndin              | 1000                      | 1468    | 1704  |
| Boi               | 1200            | 1060                | 1255                                    | BO                | 1200                      | 1606    | 1871  |
| Los               | 1600            | 1208                | 1440                                    | Los               | 1600                      | 1875    | 2208  |
| 0                 | 2000            | 1319                | 1607                                    | 0                 | 2000                      | 2088    | 2488  |
|                   | 2500            | 1430                | 1739                                    |                   | 2500                      | 2317    | 2792  |

 $\rho\text{T:}$  Soil Thermal Resistivity



## SINGLE CORE XLPE CABLE WITH LEAD ALLOY SHEATH COPPER CONDUCTOR | 38/66(72.5)kV CU/XLPE/LC/HDPE



# CABLE CONSTRUCTION

- Copper conductor, stranded, with round shape for cross-sections up to and including 800 sqmm and segmental for cross-sections 1000 sqmm and above.
- Inner semiconductor layer firmly bonded to the XLPE insulation.
- XLPE insulation.
- Outer semiconductor layer firmly bonded to the XLPE insulation (the inner semiconductor, XLPE insulation and outer semiconductor are extruded in one operation "Triple extrusion").
- Lead Alloy Sheath with water blocking tapes.
- HDPE over sheath with semi-conductive layer.

# **SPECIAL FEATURES**

- Lead Alloy Sheath: is the short circuit current carrying component and also act as radial water barrier.
- Water blocking tapes: is the longitudinal water barrier.

# APPLICABLE STANDARDS

- IEC 60840 / ICEA S-108-720
- IEC 60949 & ICEA P-45-482





# TECHNICAL INFORMATION COPPER CONDUCTOR | 38/66(72.5)kV CU/XLPE/LC/HDPE

#### **TECHNICAL DATA**

|           | Cond            | luctor           |        |            |        |                         | Thickness | Approx.        | Approx.         | Max. DC                |             |
|-----------|-----------------|------------------|--------|------------|--------|-------------------------|-----------|----------------|-----------------|------------------------|-------------|
| Item Code | CSA             | Shape            | of ISC | Insulation | of OSC | Lead Alloy<br>Thickness |           | outer<br>diam. | cable<br>weight | resistance<br>at 20 °C | Capacitance |
|           | mm <sup>2</sup> |                  | mm     | mm         | mm     | mm                      | mm        | mm             | Kg/Km           | Ω/Km                   | $\mu$ f/Km  |
| 31030021  | 150             |                  | 1.0    | 10.0       | 1.0    | 2.0                     | 3.5       | 55.6           | 6240            | 0.1240                 | 0.181       |
| 31030022  | 185             | lded             | 1.0    | 10.0       | 1.0    | 2.1                     | 3.5       | 57.5           | 6940            | 0.0991                 | 0.193       |
| 31030023  | 240             | Strar            | 1.0    | 10.0       | 1.0    | 2.1                     | 3.5       | 60.0           | 7765            | 0.0754                 | 0.211       |
| 31030024  | 300             | , pud            | 1.0    | 10.0       | 1.0    | 2.2                     | 3.5       | 62.4           | 8790            | 0.0601                 | 0.228       |
| 31030025  | 400             | , Rol            | 1.0    | 10.0       | 1.0    | 2.3                     | 3.5       | 65.2           | 10110           | 0.0470                 | 0.246       |
| 31030026  | 500             | ipact            | 1.0    | 10.0       | 1.0    | 2.4                     | 4.0       | 69.5           | 11750           | 0.0366                 | 0.268       |
| 31030027  | 630             | Com              | 1.0    | 10.0       | 1.0    | 2.5                     | 4.0       | 73.8           | 13830           | 0.0283                 | 0.297       |
| 31030028  | 800             |                  | 1.0    | 10.0       | 1.0    | 2.6                     | 4.0       | 78.1           | 16295           | 0.0221                 | 0.326       |
| 31030029  | 1000            | ded              | 1.4    | 10.0       | 1.4    | 2.8                     | 4.0       | 83.3           | 19520           | 0.0176                 | 0.365       |
| 31030030  | 1200            | itran            | 1.4    | 10.0       | 1.4    | 2.9                     | 4.5       | 88.6           | 22145           | 0.0151                 | 0.394       |
| 31030031  | 1600            | tal. S<br>illiko | 1.4    | 10.0       | 1.4    | 3.1                     | 4.5       | 95.9           | 27610           | 0.0113                 | 0.442       |
| 31030032  | 2000            | men<br>(M        | 1.4    | 10.0       | 1.4    | 3.3                     | 4.5       | 101.7          | 32500           | 0.0090                 | 0.480       |
| 31030033  | 2500            | Seg              | 1.4    | 10.0       | 1.4    | 3.5                     | 4.5       | 108.9          | 39370           | 0.0072                 | 0.528       |

#### CURRENT CARRYING CAPACITY

|                   |                 | Direct I          | Burried                               |                   |                 | Installed in Air (shaded) |       |  |
|-------------------|-----------------|-------------------|---------------------------------------|-------------------|-----------------|---------------------------|-------|--|
|                   |                 | Trefoil           | Flat                                  |                   |                 | Trefoil                   | Flat  |  |
| Bonding<br>System | CSA             | 1.0m              | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Bonding<br>System | CSA             | N.S                       |       |  |
|                   | mm <sup>2</sup> | ρ <b>T</b> = 1.2, | θ = 35 °C                             |                   | mm <sup>2</sup> |                           | 40 °C |  |
|                   | 150             | 345               | 406                                   |                   | 150             | 449                       | 510   |  |
|                   | 185             | 389               | 459                                   |                   | 185             | 513                       | 584   |  |
| ndinç             | 240             | 450               | 533                                   | ndinç             | 240             | 603                       | 690   |  |
| t Bond            | 300             | 506               | 602                                   | † Bor             | 300             | 690                       | 793   |  |
| oint              | 400             | 573               | 685                                   | oint              | 400             | 794                       | 917   |  |
| gle F             | 500             | 646               | 777                                   | gle F             | 500             | 912                       | 1060  |  |
| Sin               | 630             | 724               | 882                                   | · Sin             | 630             | 1046                      | 1230  |  |
| a or              | 800             | 799               | 987                                   | a or              | 800             | 1179                      | 1405  |  |
| ndin              | 1000            | 955               | 1164                                  | ndin              | 1000            | 1444                      | 1700  |  |
| s Bo              | 1200            | 1023              | 1256                                  | s Bo              | 1200            | 1573                      | 1865  |  |
| LOS:              | 1600            | 1142              | 1437                                  | LOS:              | 1600            | 1811                      | 2192  |  |
| 0                 | 2000            | 1225              | 1579                                  | 0                 | 2000            | 1989                      | 2455  |  |
|                   | 2500            | 1296              | 1716                                  |                   | 2500            | 2164                      | 2731  |  |

 $\rho\text{T:}$  Soil Thermal Resistivity



# SINGLE CORE XLPE CABLE WITH ALUMINUM LAMINATED SHEATH COPPER CONDUCTOR | 76/132(145)kV CU/XLPE/CWS/HDPE



# CABLE CONSTRUCTION

- Copper conductor, stranded, with round shape for cross-sections up to and including 800 sqmm and segmental for cross-sections 1000 sqmm and above.
- Inner semiconductor layer firmly bonded to the XLPE insulation.
- XLPE insulation.
- Outer semiconductor layer firmly bonded to the XLPE insulation (the inner semiconductor, XLPE insulation and outer semiconductor are extruded in one operation "Triple extrusion").
- Copper wires screen with water blocking tapes.
- Aluminum laminated sheath.
- HDPE over sheath with semi-conductive layer.

# SPECIAL FEATURES

- Copper wires screen: is the short circuit current carrying component.
- Water blocking tapes: is the longitudinal water barrier.
- Aluminum laminated Sheath: is the radial water barrier.

# APPLICABLE STANDARDS

- IEC 60840 / ICEA S-108-720
- IEC 60949 & ICEA P-45-482



# TECHNICAL INFORMATION COPPER CONDUCTOR | 76/132(145)kV CU/XLPE/CWS/HDPE

#### **TECHNICAL DATA**

|           | Conc | luctor           |        |            |        |            | Thickness | Approx.        | Approx.         | Max. DC                |             |
|-----------|------|------------------|--------|------------|--------|------------|-----------|----------------|-----------------|------------------------|-------------|
| Item Code | CSA  | Shape            | of ISC | Insulation | of OSC | Screen     |           | outer<br>diam. | cable<br>weight | resistance<br>at 20 °C | Capacitance |
|           | mm²  |                  | mm     | mm         | mm     | No. X diam | mm        | mm             | Kg/Km           | Ω/Km                   | μf/Km       |
| 35010021  | 240  |                  | 1.0    | 16         | 1.0    | 68x1.52    | 4.0       | 71.5           | 6445            | 0.0754                 | 0.152       |
| 35010022  | 300  | und,             | 1.0    | 16         | 1.0    | 68x1.52    | 4.0       | 73.8           | 7150            | 0.0601                 | 0.163       |
| 35010023  | 400  | t, Rou<br>nded   | 1.0    | 16         | 1.0    | 68x1.52    | 4.0       | 76.3           | 8120            | 0.0470                 | 0.175       |
| 35010024  | 500  | Strar            | 1.0    | 16         | 1.0    | 68x1.52    | 4.0       | 79.4           | 9250            | 0.0366                 | 0.189       |
| 35010025  | 630  | Con              | 1.0    | 16         | 1.0    | 68x1.52    | 4.0       | 83.5           | 10830           | 0.0283                 | 0.207       |
| 35010026  | 800  |                  | 1.0    | 16         | 1.0    | 68x1.52    | 4.0       | 87.6           | 12770           | 0.0221                 | 0.226       |
| 35010027  | 1000 | ded              | 1.4    | 16         | 1.4    | 68x1.52    | 4.0       | 93.5           | 15300           | 0.0176                 | 0.251       |
| 35010028  | 1200 | itran<br>in)     | 1.4    | 16         | 1.4    | 68x1.52    | 4.5       | 97.6           | 17195           | 0.0151                 | 0.269       |
| 35010029  | 1600 | tal. S<br>illiko | 1.4    | 16         | 1.4    | 68x1.52    | 4.5       | 104.5          | 21475           | 0.0113                 | 0.299       |
| 35010030  | 2000 | men<br>(M        | 1.4    | 16         | 1.4    | 68x1.52    | 4.5       | 109.9          | 25220           | 0.0090                 | 0.323       |
| 35010031  | 2500 | Seg              | 1.4    | 16         | 1.4    | 68x1.52    | 4.5       | 116.7          | 30720           | 0.0072                 | 0.353       |

#### CURRENT CARRYING CAPACITY

|                   |                 | Direct I            | Burried   |                   |                 | Installed in | Air (shaded) |
|-------------------|-----------------|---------------------|-----------|-------------------|-----------------|--------------|--------------|
|                   |                 | Trefoil             | Flat      |                   |                 | Trefoil      | Flat         |
| Bonding<br>System | CSA             | J.Om                |           | Bonding<br>System | CSA             |              |              |
|                   | mm <sup>2</sup> | ρ <b>T</b> = 1.2, ( | θ = 35 °C |                   | mm <sup>2</sup> |              | 40 °C        |
| J                 | 240             | 450                 | 521       | J                 | 240             | 600          | 669          |
| ribr              | 300             | 508                 | 588       | nibr              | 300             | 686          | 767          |
| Bor               | 400             | 576                 | 669       | Bor               | 400             | 789          | 886          |
| oint              | 500             | 652                 | 761       | oint              | 500             | 908          | 1025         |
| gle F             | 630             | 736                 | 864       | gle F             | 630             | 1044         | 1188         |
| Sing              | 800             | 817                 | 968       | Sing              | 800             | 1182         | 1358         |
| g or              | 1000            | 987                 | 1143      | g or              | 1000            | 1450         | 1640         |
| nibr              | 1200            | 1065                | 1237      | nibr              | 1200            | 1589         | 1807         |
| Boi               | 1600            | 1214                | 1421      | Boı               | 1600            | 1856         | 2133         |
| Cross             | SO 2000         | 1331                | 1570      | Cross             | 2000            | 2070         | 2402         |
| 0                 | 2500            | 1445                | 1719      | 0                 | 2500            | 2294         | 2694         |

ρT: Soil Thermal Resistivity



## SINGLE CORE XLPE CABLE WITH LEAD ALLOY SHEATH COPPER CONDUCTOR | 76/132(145)kV CU/XLPE/LC/HDPE



# CABLE CONSTRUCTION

- Copper conductor, stranded, with round shape for cross-sections up to and including 800 sqmm and segmental for cross-sections 1000 sqmm and above.
- Inner semiconductor layer firmly bonded to the XLPE insulation.
- XLPE insulation.
- Outer semiconductor layer firmly bonded to the XLPE insulation (the inner semiconductor, XLPE insulation and outer semiconductor are extruded in one operation "Triple extrusion").
- Lead Alloy Sheath with water blocking tapes.
- HDPE over sheath with semi-conductive layer.

# **SPECIAL FEATURES**

- Lead Alloy Sheath: is the short circuit current carrying component and also act as radial water barrier.
- Water blocking tapes: is the longitudinal water barrier.

# APPLICABLE STANDARDS

- IEC 60840 / ICEA S-108-720
- IEC 60949 & ICEA P-45-482





# TECHNICAL INFORMATION COPPER CONDUCTOR | 76/132(145)kV CU/XLPE/LC/HDPE

#### **TECHNICAL DATA**

|           | Conductor |                  |        |            |        |                         | Thickness | Approx.        | Approx.         | Max. DC                |             |
|-----------|-----------|------------------|--------|------------|--------|-------------------------|-----------|----------------|-----------------|------------------------|-------------|
| Item Code | CSA       | Shape            | of ISC | Insulation | of OSC | Lead Alloy<br>Thickness |           | outer<br>diam. | cable<br>weight | resistance<br>at 20 °C | Capacitance |
|           | mm²       |                  | mm     | mm         | mm     | mm                      | mm        | mm             | Kg/Km           | Ω/Km                   | μf/Km       |
| 35030021  | 240       |                  | 1.0    | 16         | 1.0    | 2.5                     | 4.0       | 74.8           | 10850           | 0.0754                 | 0.152       |
| 35030022  | 300       | und,             | 1.0    | 16         | 1.0    | 2.6                     | 4.0       | 77.2           | 12000           | 0.0601                 | 0.163       |
| 35030023  | 400       | t, Rou<br>nded   | 1.0    | 16         | 1.0    | 2.6                     | 4.0       | 79.8           | 13205           | 0.0470                 | 0.175       |
| 35030024  | 500       | Strai            | 1.0    | 16         | 1.0    | 2.7                     | 4.0       | 83.1           | 14890           | 0.0366                 | 0.189       |
| 35030025  | 630       | Con              | 1.0    | 16         | 1.0    | 2.8                     | 4.0       | 87.4           | 17130           | 0.0283                 | 0.207       |
| 35030026  | 800       |                  | 1.0    | 16         | 1.0    | 3.0                     | 4.0       | 91.9           | 20055           | 0.0221                 | 0.226       |
| 35030027  | 1000      | ded              | 1.4    | 16         | 1.4    | 3.1                     | 4.0       | 96.9           | 23220           | 0.0176                 | 0.251       |
| 35030028  | 1200      | àtran<br>in)     | 1.4    | 16         | 1.4    | 3.2                     | 4.5       | 101.2          | 25885           | 0.0151                 | 0.269       |
| 35030029  | 1600      | tal. S<br>illiko | 1.4    | 16         | 1.4    | 3.4                     | 4.5       | 108.5          | 31460           | 0.0113                 | 0.299       |
| 35030030  | 2000      | men<br>(M        | 1.4    | 16         | 1.4    | 3.6                     | 4.5       | 114.3          | 36770           | 0.0090                 | 0.323       |
| 35030031  | 2500      | Seg              | 1.4    | 16         | 1.4    | 3.8                     | 4.5       | 121.5          | 43920           | 0.0072                 | 0.353       |

#### CURRENT CARRYING CAPACITY

|                   |                 | Direct I            | Burried   |                   |                 | Installed in | Air (shaded) |
|-------------------|-----------------|---------------------|-----------|-------------------|-----------------|--------------|--------------|
|                   |                 | Trefoil             | Flat      |                   |                 | Trefoil      | Flat         |
| Bonding<br>System | CSA             | J.Om                |           | Bonding<br>System | CSA             |              |              |
|                   | mm <sup>2</sup> | ρ <b>T</b> = 1.2, ( | ∋ = 35 °C |                   | mm <sup>2</sup> | $\theta = A$ | 40 °C        |
| ວ                 | 240             | 449                 | 522       | J                 | 240             | 602          | 672          |
| nibr              | 300             | 506                 | 590       | nibr              | 300             | 687          | 771          |
| Bor               | 400             | 572                 | 671       | Bor               | 400             | 789          | 889          |
| oint              | 500             | 646                 | 762       | oint              | 500             | 906          | 1029         |
| gle F             | 630             | 725                 | 866       | gle F             | 630             | 1039         | 1192         |
| Sine              | 800             | 800                 | 969       | Sinę              | 800             | 1172         | 1360         |
| g or              | 1000            | 950                 | 1142      | g or              | 1000            | 1420         | 1636         |
| nibr              | 1200            | 1015                | 1234      | nibr              | 1200            | 1546         | 1798         |
| Boı               | 1600            | 1132                | 1410      | Boı               | 1600            | 1778         | 2108         |
| Cross             | 2000            | 1214                | 1548      | Cross             | 2000            | 1952         | 2359         |
| 0                 | 2500            | 1284                | 1679      | 0                 | 2500            | 2122         | 2622         |

ρT: Soil Thermal Resistivity

## SINGLE CORE XLPE CABLE WITH ALUMINUM LAMINATED SHEATH COPPER CONDUCTOR | 127/220(245)kV CU/XLPE/CWS/HDPE



# CABLE CONSTRUCTION

- Copper conductor, stranded, with round shape for cross-sections up to and including 800 sqmm and segmental for cross-sections 1000 sqmm and above.
- Inner semiconductor layer firmly bonded to the XLPE insulation.
- XLPE insulation.
- Outer semiconductor layer firmly bonded to the XLPE insulation (the inner semiconductor, XLPE insulation and outer semiconductor are extruded in one operation "Triple extrusion").
- Copper wires screen with water blocking tapes.
- Aluminum laminated sheath.
- HDPE over sheath with semi-conductive layer.

# **SPECIAL FEATURES**

- Copper wires screen: is the short circuit current carrying component.
- Water blocking tapes: is the longitudinal water barrier.
- Aluminum laminated Sheath: is the radial water barrier.

# APPLICABLE STANDARDS

- IEC 62067 / ICEA S-108-720
- IEC 60949 & ICEA P-45-482



# TECHNICAL INFORMATION COPPER CONDUCTOR | 127/220(245)kV CU/XLPE/CWS/HDPE

#### **TECHNICAL DATA**

|           | Cond | uctor            |        |            |        |                    | Thickness | Approx.        | Approx.         | Max. DC                |             |
|-----------|------|------------------|--------|------------|--------|--------------------|-----------|----------------|-----------------|------------------------|-------------|
| Item Code | CSA  | Shape            | of ISC | Insulation | of OSC | cu wires<br>screen |           | outer<br>diam. | cable<br>weight | resistance<br>at 20 °C | Capacitance |
|           | mm²  |                  | mm     | mm         | mm     | No. X diam         | mm        | mm             | Kg/Km           | Ω/Km                   | μf/Km       |
| 42010021  | 400  | und,             | 1.4    | 23         | 1.4    | 68x1.52            | 4.5       | 92.9           | 10125           | 0.0470                 | 0.14        |
| 42010022  | 500  | t, Roi<br>Ided   | 1.4    | 23         | 1.4    | 68x1.52            | 4.5       | 96.0           | 11330           | 0.0366                 | 0.15        |
| 42010023  | 630  | Stran            | 1.4    | 23         | 1.4    | 68x1.52            | 4.5       | 100.1          | 13020           | 0.0283                 | 0.163       |
| 42010024  | 800  | Con              | 1.4    | 23         | 1.4    | 68x1.52            | 4.5       | 104.2          | 15050           | 0.0221                 | 0.176       |
| 42010025  | 1000 | ded              | 1.4    | 23         | 1.4    | 68x1.52            | 5.0       | 108.5          | 17460           | 0.0176                 | 0.192       |
| 42010026  | 1200 | àtran<br>in)     | 1.4    | 23         | 1.4    | 68x1.52            | 5.0       | 112.6          | 19445           | 0.0151                 | 0.205       |
| 42010027  | 1600 | tal. S<br>illiko | 1.4    | 23         | 1.4    | 68x1.52            | 5.0       | 119.5          | 23880           | 0.0113                 | 0.226       |
| 42010028  | 2000 | men<br>(M        | 1.4    | 23         | 1.4    | 68x1.52            | 5.0       | 124.9          | 27740           | 0.0090                 | 0.243       |
| 42010029  | 2500 | Seg              | 1.4    | 23         | 1.4    | 68x1.52            | 5.0       | 131.7          | 33390           | 0.0072                 | 0.264       |

#### CURRENT CARRYING CAPACITY

|                   |                 | Direct            | Burried   |                   |                 | Installed in | Air (shaded) |
|-------------------|-----------------|-------------------|-----------|-------------------|-----------------|--------------|--------------|
|                   |                 | Trefoil           | Flat      |                   |                 | Trefoil      | Flat         |
| Bonding<br>System | CSA             | 1.0m              |           | Bonding<br>System | CSA             |              |              |
|                   | mm <sup>2</sup> | ρ <b>T</b> = 1.2, | θ = 35 °C |                   | mm <sup>2</sup> | $\theta = A$ | 40 °C        |
|                   | 400             | 567               | 647       | D                 | 400             | 775          | 853          |
| nding             | 500             | 641               | 736       | nding             | 500             | 891          | 985          |
| int Bo            | 630             | 725               | 835       | int Bo            | 630             | 1025         | 1141         |
| jle Po            | 800             | 806               | 936       | jle Po            | 800             | 1161         | 1302         |
| r Sing            | 1000            | 966               | 1107      | r Sing            | 1000            | 1416         | 1574         |
| o Bui             | 1200            | 1043              | 1197      | ing o             | 1200            | 1552         | 1732         |
| Bond              | 1600            | 1191              | 1374      | Bond              | 1600            | 1813         | 2042         |
| Cross             | 2000            | 1306              | 1517      | Cross             | 2000            | 2023         | 2298         |
| Ū                 | 2500            | 1421              | 1660      | 0                 | 2500            | 2244         | 2575         |

ρT: Soil Thermal Resistivity



## SINGLE CORE XLPE CABLE WITH LEAD ALLOY SHEATH COPPER CONDUCTOR | 127/220(245)kV CU/XLPE/LC/HDPE



# CABLE CONSTRUCTION

- Copper conductor, stranded, with round shape for cross-sections up to and including 800 sqmm and segmental for cross-sections 1000 sqmm and above.
- Inner semiconductor layer firmly bonded to the XLPE insulation.
- XLPE insulation.
- Outer semiconductor layer firmly bonded to the XLPE insulation (the inner semiconductor, XLPE insulation and outer semiconductor are extruded in one operation "Triple extrusion").
- Lead Alloy Sheath with water blocking tapes.
- HDPE over sheath with semi-conductive layer.

# **SPECIAL FEATURES**

- Lead Alloy Sheath: is the short circuit current carrying component and also act as radial water barrier.
- Water blocking tapes: is the longitudinal water barrier.

# APPLICABLE STANDARDS

- IEC 62067 / ICEA S-108-720
- IEC 60949 & ICEA P-45-482





# TECHNICAL INFORMATION COPPER CONDUCTOR | 127/220(245)kV CU/XLPE/LC/HDPE

#### **TECHNICAL DATA**

|           | Cond | uctor            |        |                             |        |                         | Thickness | Approx.        | Approx.         | Max. DC                |             |
|-----------|------|------------------|--------|-----------------------------|--------|-------------------------|-----------|----------------|-----------------|------------------------|-------------|
| Item Code | CSA  | Shape            | of ISC | I hickness of<br>Insulation | of OSC | Lead Alloy<br>Thickness |           | outer<br>diam. | cable<br>weight | resistance<br>at 20 °C | Capacitance |
|           | mm²  |                  | mm     | mm                          | mm     | mm                      | mm        | mm             | Kg/Km           | Ω/Km                   | μf/Km       |
| 42030021  | 400  | und,             | 1.4    | 23                          | 1.4    | 3.1                     | 4.5       | 96.4           | 18045           | 0.0470                 | 0.14        |
| 42030022  | 500  | , Roi<br>nded    | 1.4    | 23                          | 1.4    | 3.2                     | 4.5       | 99.7           | 19920           | 0.0366                 | 0.15        |
| 42030023  | 630  | Strar            | 1.4    | 23                          | 1.4    | 3.3                     | 4.5       | 104.0          | 22385           | 0.0283                 | 0.163       |
| 42030024  | 800  | Con              | 1.4    | 23                          | 1.4    | 3.4                     | 4.5       | 108.3          | 25245           | 0.0221                 | 0.176       |
| 42030025  | 1000 | ded              | 1.4    | 23                          | 1.4    | 3.5                     | 5.0       | 112.7          | 28350           | 0.0176                 | 0.192       |
| 42030026  | 1200 | ðtran<br>in)     | 1.4    | 23                          | 1.4    | 3.7                     | 5.0       | 117.2          | 31595           | 0.0151                 | 0.205       |
| 42030027  | 1600 | tal. S<br>illiko | 1.4    | 23                          | 1.4    | 3.9                     | 5.0       | 124.5          | 37730           | 0.0113                 | 0.226       |
| 42030028  | 2000 | men<br>(M        | 1.4    | 23                          | 1.4    | 4.0                     | 5.0       | 130.1          | 42755           | 0.0090                 | 0.243       |
| 42030029  | 2500 | Seg              | 1.4    | 23                          | 1.4    | 4.2                     | 5.0       | 137.3          | 50260           | 0.0072                 | 0.264       |

#### CURRENT CARRYING CAPACITY

|                   |                 | Direct I          | Burried              |                   |                 | Installed in | Air (shaded) |
|-------------------|-----------------|-------------------|----------------------|-------------------|-----------------|--------------|--------------|
|                   |                 | Trefoil           | Flat                 |                   |                 | Trefoil      | Flat         |
| Bonding<br>System | CSA             | 1.0m              | Q Q 1.0m<br>300 mm D | Bonding<br>System | CSA             |              |              |
|                   | mm <sup>2</sup> | ρ <b>T</b> = 1.2, | ) = 35 °C            |                   | mm <sup>2</sup> |              | 40 °C        |
| Вц                | 400             | 560               | 648                  | Вц                | 400             | 774          | 855          |
| int Bondi         | 500             | 632               | 736                  | ondi              | 500             | 887          | 987          |
|                   | 630             | 709               | 835                  | int B             | 630             | 1016         | 1141         |
| jle Po            | 800             | 782               | 934                  | lle Pc            | 800             | 1146         | 1300         |
| Sing              | 1000            | 920               | 1101                 | Sing              | 1000            | 1380         | 1566         |
| ng or             | 1200            | 980               | 1187                 | ng or             | 1200            | 1500         | 1718         |
| ondi              | 1600            | 1088              | 1352                 | ondi              | 1600            | 1721         | 2011         |
| oss B             | 2000            | 1167              | 1480                 | oss B             | 2000            | 1890         | 2248         |
| Č                 | 2500            | 1230              | 1599                 | Č                 | 2500            | 2054         | 2495         |

ρT: Soil Thermal Resistivity





# HV CABLES FOR SAUDI ELECTRICITY COMPANY ACCORDING TO 11-TMSS-02

### SINGLE CORE XLPE CABLE WITH COPPER WIRES SCREEN AND ALUMINUM LAMINATED SHEATH COPPER CONDUCTOR | 110kV CU/XLPE/CWS/HDPE



# CABLE CONSTRUCTION

- Copper conductor, stranded, with round shape for cross-sections up to and including 800 sqmm and segmental for cross-sections 1000 sqmm and above.
- Inner semiconductor layer firmly bonded to the XLPE insulation.
- XLPE insulation.
- Outer semiconductor layer firmly bonded to the XLPE insulation (the inner semiconductor, XLPE insulation and outer semiconductor are extruded in one operation "Triple extrusion").
- Copper wires screen with water blocking tapes.
- Aluminum laminated sheath.
- HDPE over sheath with semi-conductive layer.

# **SPECIAL FEATURES**

- Copper wires screen: is the short circuit current carrying component and designed to withstand 40 KA for 1 sec.
- Water blocking tapes: is the longitudinal water barrier.
- Aluminum laminated Sheath: is the radial water barrier.

# **APPLICABLE STANDARDS**

- IEC 60840 / ICEA S-108-720
- IEC 60949 & ICEA P-45-482

# **APPLICABLE SEC SPECS**

• 11-TMSS-02 Rev01



# TECHNICAL INFORMATION COPPER CONDUCTOR | 110kV CU/XLPE/CWS/HDPE

#### **TECHNICAL DATA**

|           | Conc            | luctor             |        |                             |                     |                    | Thickness | Approx.        | Approx.         | Max. DC                |             |
|-----------|-----------------|--------------------|--------|-----------------------------|---------------------|--------------------|-----------|----------------|-----------------|------------------------|-------------|
| Item Code | CSA             | Shape              | of ISC | I hickness of<br>Insulation | Ihickness<br>of OSC | Cu wires<br>screen |           | outer<br>diam. | cable<br>weight | resistance<br>at 20 °C | Capacitance |
|           | mm <sup>2</sup> |                    | mm     | mm                          | mm                  | No. X diam         | mm        | mm             | Kg/Km           | Ω/Km                   | μf/Km       |
| 33010004  | 400             | ,bnud,<br>d        | 0.64   | 20.32                       | 1.75                | 72x2.22            | 4.0       | 87.9           | 10755           | 0.0470                 | 0.149       |
| 33010006  | 630             | oact, Ro<br>trande | 0.64   | 20.32                       | 1.75                | 72x2.22            | 4.0       | 93.6           | 12125           | 0.0283                 | 0.175       |
| 33010007  | 800             | Comp               | 0.76   | 20.32                       | 1.75                | 72x2.22            | 4.0       | 99.1           | 15570           | 0.0221                 | 0.190       |
| 33010008  | 1000            | ded                | 0.76   | 20.32                       | 1.75                | 72x2.22            | 4.0       | 103.2          | 17920           | 0.0176                 | 0.210       |
| 33010009  | 1200            | . Stran<br>kan)    | 0.76   | 20.32                       | 1.75                | 72x2.22            | 4.0       | 107.3          | 19860           | 0.0151                 | 0.224       |
| 33010010  | 1600            | mental<br>(Milli   | 0.76   | 20.32                       | 1.75                | 72x2.22            | 4.0       | 114.2          | 24225           | 0.0113                 | 0.248       |
| 33010011  | 2000            | Seg                | 0.76   | 20.32                       | 1.75                | 72x2.22            | 4.0       | 119.6          | 28040           | 0.0090                 | 0.267       |

#### CURRENT CARRYING CAPACITY

|                   |                 | Direct I          | Burried   |                   |                 | Installed in | Air (shaded) |
|-------------------|-----------------|-------------------|-----------|-------------------|-----------------|--------------|--------------|
|                   |                 | Trefoil           | Flat      |                   |                 | Trefoil      | Flat         |
| Bonding<br>System | CSA             | 1.0m              |           | Bonding<br>System | CSA             | Å Š          |              |
|                   | mm <sup>2</sup> | ρ <b>T</b> = 1.2, | ∋ = 35 °C |                   | mm <sup>2</sup> |              | 40 °C        |
| bu                | 400             | 578               | 662       | bu                | 400             | 787          | 871          |
| Bondi             | 630             | 740               | 855       | Bond              | 630             | 1042         | 1166         |
| e Point           | 800             | 824               | 959       | le Poin           | 800             | 1180         | 1331         |
| r Singl           | 1000            | 990               | 1135      | r Singl           | 1000            | 1442         | 1612         |
| nding o           | 1200            | 1069              | 1229      | ding o            | 1200            | 1580         | 1775         |
| oss Bor           | 1600            | 1220              | 1412      | oss Bor           | 1600            | 1846         | 2094         |
| Cre               | 2000            | 1340              | 1559      | Cre               | 2000            | 2060         | 2357         |

ρT: Soil Thermal Resistivity



# SINGLE CORE XLPE CABLE WITH LEAD ALLOY SHEATH COPPER CONDUCTOR | 115kV CU/XLPE/LC/HDPE



# CABLE CONSTRUCTION

- Copper conductor, stranded, with round shape for cross-sections up to and including 800 sqmm and segmental for cross-sections 1000 sqmm and above.
- Inner semiconductor layer firmly bonded to the XLPE insulation.
- XLPE insulation.
- Outer semiconductor layer firmly bonded to the XLPE insulation (the inner semiconductor, XLPE insulation and outer semiconductor are extruded in one operation "Triple extrusion").
- Lead Alloy Sheath with water blocking tapes.
- HDPE over sheath with semi-conductive layer.

# SPECIAL FEATURES

- Lead Alloy Sheath: is the short circuit current carrying component and designed to withstand 40 KA for 1 Sec and also act as radial water barrier.
- Water blocking tapes: is the longitudinal water barrier.

# **APPLICABLE STANDARDS**

- IEC 62067 / ICEA S-108-720
- IEC 60949 & ICEA P-45-482

# APPLICABLE SEC SPECS

• 11-TMSS-02 Rev01



# TECHNICAL INFORMATION COPPER CONDUCTOR | 115kV CU/XLPE/LC/HDPE

#### **TECHNICAL DATA**

|           | Conc            | luctor             |        |                             |                     |                         | Thickness | Approx.        | Approx.         | Max. DC                |             |
|-----------|-----------------|--------------------|--------|-----------------------------|---------------------|-------------------------|-----------|----------------|-----------------|------------------------|-------------|
| Item Code | CSA             | Shape              | of ISC | I hickness of<br>Insulation | Thickness<br>of OSC | Lead Alloy<br>Thickness |           | outer<br>diam. | cable<br>weight | resistance<br>at 20 °C | Capacitance |
|           | mm <sup>2</sup> |                    | mm     | mm                          | mm                  | mm                      | mm        | mm             | Kg/Km           | Ω/Km                   | μf/Km       |
| 34030004  | 400             | ound,<br>d         | 0.64   | 20.32                       | 1.75                | 6.3                     | 4.0       | 96.3           | 26290           | 0.0470                 | 0.149       |
| 34030006  | 630             | oact, Ro<br>trande | 0.64   | 20.32                       | 1.75                | 5.8                     | 4.0       | 102.5          | 29020           | 0.0283                 | 0.175       |
| 34030007  | 800             | Comp<br>S          | 0.76   | 20.32                       | 1.75                | 5.5                     | 4.0       | 106.0          | 30810           | 0.0221                 | 0.190       |
| 34030008  | 1000            | ded                | 0.76   | 20.32                       | 1.75                | 5.3                     | 4.0       | 109.7          | 33265           | 0.0176                 | 0.210       |
| 34030009  | 1200            | . Stran<br>kan)    | 0.76   | 20.32                       | 1.75                | 5.1                     | 4.0       | 113.4          | 35225           | 0.0151                 | 0.224       |
| 34030010  | 1600            | mental<br>(Milli   | 0.76   | 20.32                       | 1.75                | 4.7                     | 4.0       | 119.5          | 39250           | 0.0113                 | 0.248       |
| 34030011  | 2000            | Seg                | 0.76   | 20.32                       | 1.75                | 4.5                     | 4.0       | 124.5          | 43125           | 0.0090                 | 0.267       |

#### CURRENT CARRYING CAPACITY

|                   |                 | Direct            | Burried              |                   |                 | Installed in | Air (shaded) |
|-------------------|-----------------|-------------------|----------------------|-------------------|-----------------|--------------|--------------|
|                   |                 | Trefoil           | Flat                 |                   |                 | Trefoil      | Flat         |
| Bonding<br>System | CSA             | 1.0m              | Q Q 1.0m<br>300 mm D | Bonding<br>System | CSA             | N S          |              |
|                   | mm <sup>2</sup> | ρ <b>T</b> = 1.2, | θ = 35 °C            |                   | mm <sup>2</sup> |              | 40 °C        |
| bu                | 400             | 569               | 663                  | bui               | 400             | 790          | 879          |
| Bondi             | 630             | 716               | 854                  | Bond              | 630             | 1032         | 1170         |
| e Point           | 800             | 790               | 925                  | e Point           | 800             | 1161         | 1331         |
| r Singl           | 1000            | 925               | 1126                 | r Singl           | 1000            | 1392         | 1601         |
| nding o           | 1200            | 987               | 1214                 | ding o            | 1200            | 1512         | 1755         |
| oss Bor           | 1600            | 1101              | 1385                 | oss Bor           | 1600            | 1737         | 2053         |
| Cre               | 2000            | 1184              | 1519                 | Cro               | 2000            | 1909         | 2295         |

pT: Soil Thermal Resistivity



### SINGLE CORE XLPE CABLE WITH COPPER WIRES SCREEN AND ALUMINUM LAMINATED SHEATH COPPER CONDUCTOR | 132kV CU/XLPE/CWS/HDPE



# CABLE CONSTRUCTION

- Copper conductor, stranded, with round shape for cross-sections up to and including 800 sqmm and segmental for cross-sections 1000 sqmm and above.
- Inner semiconductor layer firmly bonded to the XLPE insulation.
- XLPE insulation.
- Outer semiconductor layer firmly bonded to the XLPE insulation (the inner semiconductor, XLPE insulation and outer semiconductor are extruded in one operation "Triple extrusion").
- Copper wires screen with water blocking tapes.
- Aluminum laminated sheath.
- HDPE over sheath with semi-conductive layer.

# **SPECIAL FEATURES**

- Copper wires screen: is the short circuit current carrying component and designed to withstand 40 KA for 1 sec.
- Water blocking tapes: is the longitudinal water barrier.
- Aluminum laminated Sheath: is the radial water barrier.

# **APPLICABLE STANDARDS**

- IEC 60840 / ICEA S-108-720
- IEC 60949 & ICEA P-45-482

# **APPLICABLE SEC SPECS**

• 11-TMSS-02 Rev01



# TECHNICAL INFORMATION COPPER CONDUCTOR | 132kV CU/XLPE/CWS/HDPE

#### **TECHNICAL DATA**

|           | Conc            | luctor             |        |            |        |            | Thickness | Approx.        | Approx.         | Max. DC                |             |
|-----------|-----------------|--------------------|--------|------------|--------|------------|-----------|----------------|-----------------|------------------------|-------------|
| Item Code | CSA             | Shape              | of ISC | Insulation | of OSC | screen     |           | outer<br>diam. | cable<br>weight | resistance<br>at 20 °C | Capacitance |
|           | mm <sup>2</sup> |                    | mm     | mm         | mm     | No. X diam | mm        | mm             | Kg/Km           | Ω/Km                   | μf/Km       |
| 35010003  | 400             | ound,<br>d         | 0.64   | 21.6       | 1.75   | 72x2.22    | 4.0       | 90.4           | 11070           | 0.0470                 | 0.143       |
| 35010005  | 630             | oact, Re<br>trande | 0.64   | 21.6       | 1.75   | 72x2.22    | 4.0       | 96.2           | 12470           | 0.0283                 | 0.168       |
| 35010006  | 800             | Comp<br>S          | 0.76   | 21.6       | 1.75   | 72x2.22    | 4.0       | 101.7          | 15930           | 0.0221                 | 0.182       |
| 35010007  | 1000            | ded                | 0.76   | 21.6       | 1.75   | 72x2.22    | 4.0       | 105.8          | 18290           | 0.0176                 | 0.200       |
| 35010008  | 1200            | . Stran<br>kan)    | 0.76   | 21.6       | 1.75   | 72x2.22    | 4.0       | 109.9          | 20250           | 0.0151                 | 0.214       |
| 35010009  | 1600            | mental<br>(Milli   | 0.76   | 21.6       | 1.75   | 72x2.22    | 4.0       | 116.8          | 24640           | 0.0113                 | 0.237       |
| 35010010  | 2000            | Seg                | 0.76   | 21.6       | 1.75   | 72x2.22    | 4.0       | 122.2          | 28475           | 0.0090                 | 0.255       |

#### CURRENT CARRYING CAPACITY

|                   |                 | Direct            | Burried              |                   |                 | Installed in | Air (shaded) |
|-------------------|-----------------|-------------------|----------------------|-------------------|-----------------|--------------|--------------|
|                   |                 | Trefoil           | Flat                 |                   |                 | Trefoil      | Flat         |
| Bonding<br>System | CSA             | 1.0m              | Q Q 1.0m<br>300 mm D | Bonding<br>System | CSA             | N S          |              |
|                   | mm <sup>2</sup> | ρ <b>T</b> = 1.2, | θ = 35 °C            |                   | mm <sup>2</sup> |              | 40 °C        |
| bu                | 400             | 577               | 660                  | bui               | 400             | 786          | 867          |
| Bondi             | 630             | 740               | 853                  | Bond              | 630             | 1040         | 1160         |
| e Point           | 800             | 824               | 956                  | e Point           | 800             | 1178         | 1325         |
| r Singl           | 1000            | 990               | 1132                 | r Singl           | 1000            | 1438         | 1604         |
| o guipt           | 1200            | 1069              | 1226                 | o guipt           | 1200            | 1576         | 1765         |
| oss Bor           | 1600            | 1221              | 1408                 | oss Bor           | 1600            | 1842         | 2081         |
| Cre               | 2000            | 1341              | 1556                 | Cre               | 2000            | 2056         | 2343         |

pT: Soil Thermal Resistivity



### SINGLE CORE XLPE CABLE WITH COPPER WIRES SCREEN AND ALUMINUM LAMINATED SHEATH COPPER CONDUCTOR | 230kV CU/XLPE/CWS/HDPE



# CABLE CONSTRUCTION

- Copper conductor, stranded, with round shape for cross-sections up to and including 800 sqmm and segmental for cross-sections 1000 sqmm and above.
- Inner semiconductor layer firmly bonded to the XLPE insulation.
- XLPE insulation.
- Outer semiconductor layer firmly bonded to the XLPE insulation (the inner semiconductor, XLPE insulation and outer semiconductor are extruded in one operation "Triple extrusion").
- Copper wires screen with water blocking tapes.
- Aluminum laminated sheath.
- HDPE over sheath with semi-conductive layer.

# **SPECIAL FEATURES**

- Copper wires screen: is the short circuit current carrying component and designed to withstand 63 KA for 1 sec.
- Water blocking tapes: is the longitudinal water barrier.
- Aluminum laminated Sheath: is the radial water barrier.

# **APPLICABLE STANDARDS**

- IEC 60840 / ICEA S-108-720
- IEC 60949 & ICEA P-45-482

# APPLICABLE SEC SPECS

• 11-TMSS-02 Rev01



# TECHNICAL INFORMATION COPPER CONDUCTOR | 230kV CU/XLPE/CWS/HDPE

#### **TECHNICAL DATA**

|           | Cond            | luctor              |        | Thickness of | of Thickness | ess Cu wires       | Thickness | Approx.        | Approx.         | Max. DC                |             |
|-----------|-----------------|---------------------|--------|--------------|--------------|--------------------|-----------|----------------|-----------------|------------------------|-------------|
| Item Code | CSA             | Shape               | of ISC | Insulation   | of OSC       | cu wires<br>screen |           | outer<br>diam. | cable<br>weight | resistance<br>at 20 °C | Capacitance |
|           | mm <sup>2</sup> |                     | mm     | mm           | mm           | No. X diam         | mm        | mm             | Kg/Km           | Ω/Km                   | μf/Km       |
| 43010003  | 630             | t, Round,<br>nded   | 1.0    | 24.0         | 2.0          | 72 X 2.82          | 4.0       | 104.9          | 16385           | 0.0283                 | 0.159       |
| 43010004  | 800             | Compac              | 1.0    | 24.0         | 2.0          | 72 X 2.82          | 4.0       | 109.0          | 18430           | 0.0221                 | 0.171       |
| 43010005  | 1000            | -0                  | 1.0    | 24.0         | 2.0          | 72 X 2.82          | 4.0       | 112.3          | 20700           | 0.0176                 | 0.186       |
| 43010006  | 1200            | l. Strande<br>ikan) | 1.0    | 24.0         | 2.0          | 72 X 2.82          | 4.0       | 116.4          | 22690           | 0.0151                 | 0.198       |
| 43010008  | 1600            | Segmenta<br>(Mill   | 1.0    | 24.0         | 2.0          | 72 X 2.82          | 4.0       | 128.7          | 31010           | 0.0090                 | 0.235       |
| 43010009  | 2000            |                     | 1.0    | 24.0         | 2.0          | 72 X 2.82          | 4.0       | 135.5          | 36680           | 0.0072                 | 0.255       |

#### CURRENT CARRYING CAPACITY

|                   |                 | Direct I          | Burried              |                   |                 | Installed in | Air (shaded) |
|-------------------|-----------------|-------------------|----------------------|-------------------|-----------------|--------------|--------------|
|                   |                 | Trefoil           | Flat                 |                   |                 | Trefoil      | Flat         |
| Bonding<br>System | CSA             | 1.0m              | Q Q 1.0m<br>300 mm D | Bonding<br>System | CSA             | N.S          |              |
|                   | mm <sup>2</sup> | ρ <b>T</b> = 1.2, | ∋ = 35 °C            |                   | mm <sup>2</sup> |              | 40 °C        |
| ding              | 630             | 727               | 836                  | ding              | 630             | 1030         | 1143         |
| n† Bonc           | 800             | 809               | 936                  | int Bond          | 800             | 1167         | 1304         |
| ngle Po           | 1000            | 968               | 1108                 | ngle Po           | 1000            | 1420         | 1578         |
| ng or Si          | 1200            | 1045              | 1199                 | ng or Si          | 1200            | 1556         | 1736         |
| ss Bondi          | 1600            | 1309              | 1518                 | ss Bondi          | 1600            | 2029         | 2303         |
| Cro               | 2000            | 1423              | 1661                 | Cros              | 2000            | 2251         | 2580         |

 $\rho\text{T:}$  Soil Thermal Resistivity



# DRUM HANDLING INSTRUCTIONS

Cables and Conductors should be installed by trained personnel in accordance with good engineering practices, recognized codes of practise, statutory local requirements, IEE wiring regulations and where relevant, in accordance with any specific instructions issued by the company. Cables are often supplied in heavy cable reels and handling these reels can constitute a safety hazard. In particular, dangers may arise during the removal of steel binding straps and during the removal of retaining battens and timbers which may expose projecting nails.



Lifting cable drums using crane.



Do not lay drums flat on their sides, use proper stops to prevent drums roling.



Lift drums on fork trucks correctly.



Secure drums adequately before transportation.



Roll in the direction shown by the arrow.

# **RECOMMENDATIONS FOR** CABLES INSTALLATION

#### INSTALLATION

- Precautions should be taken to avoid mechanical damage to the cables before and during installation.
- Exceeding the manufacturer's recommended maximum pulling tensions should be avoided as this can result in damage to the cable.
- If cables are to be installed in ducts, the correct size of duct should be used.
- The type of jointing and filling compounds employed should be chemically compatible with the cable materials.
- The cable support system should be such as to avoid damage to the cables.
- Cables specified in this catalogue are designed for fixed installations only; they are not intended for use as, for example, trailing or reeling cables.
- Repeated over-voltage testing can lead to premature failure of the cable.
- The selection of cable glands, accessories and any associated tools should take account of all aspects of intended use. Any semi-conducting coating present on the oversheath should be removed for a suitable distance from joints and terminations.
- Care should be exercised with single-core cables to ensure that the bonding and earthing arrangements are adequate to cater for circulating currents in screen(s).



# ORDERING INFORMATION

To serve our customer in minimum time and high efficiency, our valuable customers are requested to provide the following details along with their enquiries and orders:

- 1. Conductor required cross sectional area.
- 2. Metallic screen type (copper tape or copper wire) and area or short circuit current (copper wire screen).
- 3. System Voltage Rate.
- 4. System Short Circuit required.
- 5. Applicable customer specification or International Standard / Norm.
- 6. Conductor material (Copper/Aluminum).
- 7. Insulation Material (XLPE), and if there is specified thickness from client.
- 8. Lead Alloy (required or not)
- 9. Cable jacketing material (PVC/PE) and its thickness if required
- 10. Cable special features required, e.g. Flame Retardant Type to IEC 60332-3, Anti-termite.
- 11. Required length of cables (drum schedules)

